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In this note we consider the question when can a degenerate rational
function be a best mean approximation on an interval [a, b].

Let Rmn[a, b] be the family of ratios p/q of polynomials p of degree ~ n
to polynomials q of degree ~ m which are positive on [a, b]. Let Sdenote
integration over [a, b) and for g E era, b] define

II gIf = Jig I·

The approximation problem is: Given IE era, b] to find an r* minimizing
III - r II among all elements r of Rmn[a, b]. Any such r* is called a best
(mean, L 1) approximation to f A proof is given in [I] that every continuous
function has a best approximation.

Denote the exact degree of a polynomial p by 8(p). If a nonzero rational
function r is represented as p/q, where p and q have no common factors, then
we define the degeneracy of r to be d(r) = min{n - 8(p), m - 8(q)}. The
zero rational function has degeneracy m. A rational function with positive
degeneracy is said to be degenerate (or nonnormal in the terminology of
[1, 237]). In the case of Chebyshev approximation, a sufficient condition for I
to have r as (unique) best approximation is that 1- r alternate
n + m + I - d(r) times [2,80]. Thus there exist many functions with
degenerate best approximations. On the other hand, Cheney and Goldstein
[1,239] have proved that a degenerate rational function is a best approx
imation only to itself in the case of mean square approximation. It is,
therefore, of interest to see what properties I possesses if it has a degenerate
best mean approximation.

If we want to study L 1 approximation with a multiplicative positive weight
function w, we can simply define Sto denote integration after multiplication
by w; all results will remain true except in the example following (1).

This paper makes heavy use of the techniques of Cheney and Goldstein [1].
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PRELIMINARIES

A fundamental role in mean approximation is played by the set

Z(r) = {x :f(X) = reX), a ~ x ~ b}.

Let,....., Z(r) stand for [a, b] ,....., Z(r).
We will make use of the characterization lemma for linear mean approx

imation, a proof of which appears in [2, 103].

LEMMA 1. A necessary and sufficient condition that

Ilf - r II ~ Ilf - r - AS II for all real A is that If s sgn(f - r) I~ f Is I.
Z(r)

In general, because of the nonconvexity of Rmn[a, b] for m > 0, there is no
simple test for an element of this space to be a best approximation. In the
special case where the approximating function is zero, the above lemma
completely answers this question; namely, °is a best approximation to f
if and only if for all r E Rmn[a, b],

If~z(o) r sgn(f) I ~ 5z(o) I r I· (1)

EXAMPLE. Let n = 0, m = 1, a = 0, b = 1. Select f such that
Z(O) :J [0, 1/4] u [3/4, 1]. We need only consider the case where rex) =
A/(1 + Bx), A > 0, B > -1. By convexity of r it is easily seen that

5
3/4 fl/4 fl

r ~ r + r;
1/4 0 3/4

hence (1) is always satisfied. It follows that °is a best approximation to f
from R l °[O, 1] and has degeneracy 1. It is a consequence of Theorem 1 that °
is a best approximation only to itself if m :;? 2.

IMPOSSIBILITY OF DEGENERACY Two

The following lemma is easily proved.

LEMMA 2. Let g be a positive continuousfunction on [a, b]. Ifa < A < Jk < b,
then there exists a quadratic polynomial s > °such that

5"g 5 g- > -
,\ s w s'

W = [a, b] ,....., [A, Jk].
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THEOREM 1. If the rational/unction / has degeneracy 2 or more, and if r is
a best approximation to J, then / = r.

Proof If / =I=- r, then / - r is nonzero on an interval (A, fL) C (a, b).
Assume that / - r is positive on this interval. Select s as in Lemma 2, with
g = 1jq. Then

A pApS + A
r + - = - + - = --E R n[a b].qs q qs qs m'

Let v = 1j(qs). Then

IJv . sgn(f - r) I ~ rv . sgn(f - r) - Jw v . sgn(f - r),

IJv . sgn(f - r) 1- L(rl I v I ~ rv - Jw v > 0.

It follows by Lemma 1 that r is not a best approximation to / in
{r + AV} C Rmn[a, b], proving the theorem.

DEGENERACY ONE

In the case that r has degeneracy one the theory is less satisfactory. Using
arguments similar to those in the proofs of Lemma 2 and Theorem 1, we
obtain

LEMMA 3. Let a positive continuous/unction g be given, and let a < A < b.
Then there exist first degree polynomials s, t which are positive on [a, b] such that

JA ~ > Jb ~
a S A S

and

THEOREM 2. Let r be degenerate and let it be a best approximation to f
Then both a and b are limit points 0/ Z(r).

We now show that if r is a best approximation to J, then Z(r) is of positive
measure.

LEMMA 4. Let z/1 be a continuous strictly monotonic function on [a, b). For
every measurable boundedJ, the condition

n = 0, 1,... ,

implies that / = °almost everywhere.
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Proof The algebra generated by {if;n : n = 0, I,...} is dense (with respect
to the sup norm) in e[a, b] by Stone's Theorem. The convergence of a
sequence with respect to the sup norm on [a, b] implies convergence with
respect to the L 1 norm on [a, b]; also C[a, b] is dense in L1 [a, b]. It follows
that the algebra is dense in L1[a, b]. We have, for g in the algebra,

Jj2 = Jfg + Jf(f - g) ~ {sup I f(x) I : a ~ x ~ b} [If - gill ;

hence f j2 = °and f = °almost everywhere.

THEOREM 3. The orthogonal complement of Rmn[a, b], m > 0, in the space
of bounded measurable functions is the set of functions vanishing almost
everywhere.

Proof. We argue as in the proof of the theorem of Cheney and Goldstein
[1,236-237] with if;(x) = x/I, Po = 1.

THEOREM 4. A degenerate element r of Rmn[a, b] cannot be a best approx
imation to f E C[a, b] unless Z(r) is a set ofpositive measure.

Proof Suppose r = p/q is degenerate. Let s(x) = x - ex, ex $ [a, b]. For
all real'\, r~ = r + ,\fqs = (ps + '\)/qs E Rmn[a, b]. Now suppose r is a best
approximation tofE C[a, b] and Z(r) is a set of measure zero. By Lemma 1,

IJ~ sgn (f - r)1 ~ J \~ I= 0.
qs Z(r) qs

This must be true for every ex $ [a, b] and so sgn(f - r)/q is in the orthogonal
complement of R 1°[a, b]. Further, I[sgn(f - r)]/q I ~ l/min{q(x): a ~ x ~ b}
and [sgn(f - r)]/q is continuous on Z(r). It follows from Theorem 3 that
[sgn(f - r)]/q vanishes almost everywhere. We have a contradiction and
the theorem is proved.

It is a consequence of Theorem 2 or 4 that if r is degenerate and is a best
approximation to f, r - fvanishes at an infinite number of points; hence,

COROLLARY. If r is degenerate, the only analytic function which has r as a
best approximation is r itself.
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